ARROWIPORA FROMENSIS A NEW GENUS AND SPECIES OF TABULATE-LIKE CORAL FROM THE EARLY CAMBRIAN MOOROWIE FORMATION, FLINDERS RANGES, SOUTH AUSTRALIA

by Margaret K. Fuller** \& Richard J. F. Jenkins*

Summary

 tron the Farly Cambrim Monrowie Fornathon, Flinders Ranges, South Australia. Trams. R. Soc. S Auk, 119(2), 75-82. 31 May. 1995.

Abstract

The recently discovered Early Canbrian tabulate-like coral Armaporm fromersis gen. et sp. nov. oceurs in the Moorowie Formation of the castenn Flindors Ranges. It is Found in an ancient reefal environment in assactation with Mororsvipurt ithamberemsts Euller \& Jenkins 1994 and Findersipore bownemil Lafuste 1991. Arrowiparat fromensis has labulate-like characteristies inctudine the ceriond form of the corallum. wedge-shaped to spine-like xepta and strongly developed dissepiment-like tabulue. Although unlike any other Farly Carnbrian coral, skeletal chanacterstics are simitar to some miehelimids. wheh have a time range from the Late Silurian to the Late Permanh. Arrowiona frumensis provides further evidence that the time range of the Subclass Tabolata possibly extended to the Early Cambian

Key Womns: Arrminura fromensis, Early Cambrian, Moorowie Formation, tabulate-like conral. Flinders Ranges. Soult Australis.

Introduction

Arrowipora fromensis gen. el sp. nov. oceurs in the Early Cambrian Moorowie Formation in the eastem Flinders Ranges of South Australia in association with Minorowipora chamberensis Fuller \& Jenkins 1994, and Findersipora bowmani Lafuste 1991. It is present in slamped reefal bloeks within a megabreccia at a ste close to the disused Moorowie Mine (Fig. 1) described in Fuller \& Jenkins (994). The corals are preserved as upright coralla relative to bedding and clearly are in lite position within individual slump blocks. They occur in association with both fragmental and encrusting remains of the calcimicrobes Renalcis Vologdin 1932, Girvanella Nicholson \& Etheridge 1878 and Epiphvon Bormeman 1886, and current-deposiled archaeocyaths. The ancient reefal systern may have been established on a marginal fan comprising a coarse breccia (Savarese er al 1993). The high energy marine environment was responsible for the influxes of sediment preserved within the framework of the coral colonies. Arfonipura fromemes and the two previously described corals from Moorowic have few skeletal chatacteristics in common.

Preservation

The available material, collected many years ago by Mr Brent Bowman, then a technical assistant at the Ufiversity of Adelaide, shows parts of probably one

[^0]

Fig. 1. Locahon map showing fossil oceurrence near the Moorowie Mine and the distribution of Early and Middle Cumbrian outcrops in the Flinders Ranges of South Australiz.

Fig. 2. Holotype SAM P34167 (complete specimen), illustrating rectangular shelves extending from a large colony (x1.0).

Fig. 3. Hototype SAM P34167 (reverse side of specimen shown in Fig. 2) with shelf-like projections across adiacent sediment (81.0$)$.
solury broken from it large specimen (Figs 2,3). During life the eolony appears to have been repeatedly hut partly covered by centimetre thick layers of line sediment which now fill large spaces between lateral expansons of the corallum. Many corallites were smothered. alkwing only a limited number to continue their growth. Subsequebt corallies grew either inslined or spread laterally above the lenses of sediment. Transverse and oblique sections of small arehaeocyaths tying on their sides relative to bedding are evident in cavities between extended shelves of the corallum (Figs, 2,3 . The geopetal infilling of the archaewcyaths further indicates that they were transponel into the eavitien with the sediment.

Caleareous sediments filling small cavities hetween the corallites have generally been Tecrystallized, white the calces (byether with larger cavities) are usually filled with very fine sand or silt. Laterally exuended shelves of the specimen SAM P34167 are irregularly rectangular or platy and project over the bioclastic and/or calcarenite natrix (Figs 2.3). Coralhtes also show indications of being eraded by rapid, energetic iniluxet of colarse sind. Calcite-filled fracuires appatently related to post-diageneric deformation of the curallum oceur rarely (Figs $4 \mathrm{~B}, \mathrm{C}$).

Recrystallization has affected ath of the colony and some of the skeletal structures observed may be artilacts of diagenesis. There are, however, domains. within the recerystallized fabric where some evidenceof the promary structure of the skeleton appears to be preserved. These setic, rather robust fibrous elements. which evidenily formed the sclerenchyme falcareous skelcton of corallites), are seen as either lineations across the walls of corallites (in transverse section) ind/or divergent bundles (in longitudinal section) (Figs 4E.5D).

In longitudinal section, upturned spines along some corallite walls (Fig. 4C), and spines situated on the upper surface of some tabulae (Fig, 4D) are represented by bundled fibres, giving both the wall and tabulac at bumpy sppearance. In transverse section. most septa appear to lerminale in fan-shaped arrays of fibres, or similar arrays arise from the walls (Fig. 5C). The bundled fibres resemble primntive trabeculac. Howevers fan-shaped tufts in carbonates often result from diagenexis (Oekentotp 1989).

Systematic palacontology

Phylum: CNIDARIA
Class: ANTHOZOA
Subclase: YTABULATA
Family: uncertain

Genus: Aroonipora gen. nov. Typo species: Aromipora fromuncis sp, nov,

Etrmotosy

For the Arrowie Basin, an Early Cambrianshaltow marine busin. extending over much of the area vi the presen Flinders Ranges of South Australio.

Diugnersis

Corallum larges, nassive cerioid, comprismg polygonal curalites. corallites prismatic and irregulatly cylindrical; walls separuted by a media! plane, thick. wavy to erenate, sometimes afronst stratght; tabulae numerous, tarely complete, commonly dissepimentlike tabellae; septa numernus ot absent, numbering up $\omega 35$ in each coraltite; where present septa form short wedge- to spine-like projections into the-lumen: toural pores ibsent.

Arrowipara fromensis sp. nov. ElGS 2-5

Etyniolegy

For nearhy Lake Frome.

Diagnosis
 As for genus.

Type spectimens. The specimens described in duis papet are held at the South Australian Museum (SAM). Holotype SAM P34167, a polished slab of a broken part of a corallum and thin sections SAM P34167 1. SAM P34167-2. Paratype SAM P31962-1. SAM P31962-2, counterparts comprising two triangular. large, eut, polished slabs approximately 34 cm normal 10) hedding and 28 cm paralle! to bedding. conkaming either two coralla or more likely the disjunct parts of one large corallum which formed numerous platy shelves. Thin section SAM P34168-1. The material was collected from the Moornwie Formation, near the Moorowie Mine in the eastern Flinders Ranges. (Fig. 1).

Deseription

Colony large-more than 24 cm tall and extending laterally well in excess of 23 sm . In longitudinal section the corallum may broaden upward, or more commenly. forms wide shelves extending laterally over the adjacent sediment, Shelves are either irregularly rectangular in shape, with corallites tending to diverge slightly. or are plate-like. Individual shelves measure up to 70 mm high and 130 min in width (Figs 2,3). The upper surface of the shelves is irregularly horizontal to concave, and calices may extend up to 7 nom above the uppermost tabellae. In tanasverse section (Figs $5 A, B, C)$, the cerioid cotallites are seen as $5-\gamma$ (generally 6) sided polyguns, varying belween 10 and 14 mm in dameter.
Walls are relalively thick varying beeween 0.1 mm and 1.0 mm . and are wavy to almost suraight. The inner surfaces of the walls are irregular, due to the insertion

Fig. 4. Longitudinal sections of Holotype SAM P34167 A,B. Adjoining sections illustrating general shape of the corallites, tabulae, vertical and basal corallite walls ($\mathbf{x} 2.4$). C. The irregular surface of the walls and upper surface of tabulae. Two fractures which post date growth are observed mid-to lower-right of figure, together with the recrystallized fabric within the corallite (x 10.6). D. Enlarged section (x 2.4) of corallite (lower right Fig. 4B) illustrating tabulae with possible septal spinules on the upper surface. E. Higher magnification ($\times 40$) of a corallite section illustrating diverging fibres of a vertical wall, a; and the similar structure of the basal wall, b; and tabulac, c.

Fig. 5-A. Transverse section of Folotype SAM P34167 (x38), B. Transverse section of Paratype SAM P34168 (x4 5) sbowing yariation in coratlite shape and septa, Tabulac are observed as irregular lines crossing the coratlite: the midline of the wall (arrowed) may be seen in some adjuining corallites. C. Enlarged section (x10.5) of SA illastrating septa, wall irregularitics, mudine a and tabulae b. The recrystallized fabric is observed within the coralite. D. Corallite walts (x40) showing the bundles of fibres which cross the wall (arrowed) in sections of the specimen.
of rumerons tahellide and septal spines. In thin sections. a medial line divides the walls of adjoining corallites, (Figs 5A.C).

In transverse section at low magnifications (up to $X 40)$ staight te slightly diverging fibres coossing the waills hetween adjacent corallites are commotly disrupted by the medial line (Figs SA, B, C, D). In longitudinal section, fitorous elements diverge outward and upwatds fown the uedial line and often prostrube into the lumen giving the walls an irregular appearance. The walls, which truncate parent corallites and form the base of subsequent corallites, are composed of vertical hoslighty indined fibres. These partitions atise from the vertical walls and are usually V-shaped, but may be andulating, horizontal or inelined (Figs 4C.D,E),

In tongitudinal section (Figs 2,3,4A, B, C) , indiyidual corallites are prismatic to irregularly eylindrival and ap 1014 mm wide and 47.5 mm long. Corallites vary litte in diameter and length, prior to the addition of new corallites (increase). Increase is hoth lateral and peripheral intracalicular parricidal within the established body of the colloty (Figs 2,4A, B).

Tabolac are numerous, commonly formed of incoriplete, globose and dissepiment-like labellat, Ocasionally some are continuous across very narrons incallites. Tabellae may arise from the wall ot fiom adjacent tabellae, extendigg inward and curving downwards to rest upon other tabeltae. They are very thin, penerally less than 0.06 mm . often wavy and rately straight. Small projections often bectur on the upper surface of tabulae (Fig. 4D). In transverse section tabellat are seen as wavy and crenate, arising Irom the walls and anastnmosing with adjacent labellac (Figs 5A-C) At kow magnification the fibrous stancture of the tabellae is similat to that of the walls. with some bundles extending to give the small projections on the upper surtace. In tongitudinal section, the fibrous elements are normal to the base of the tabellias.

In iransverse section, septal spines vary frian numersus (about 35) to absent and are often difficult to dissinguish from other integulatites on the wall (Figs, SA.B.C). Where present they are short (up to e. 0.25 nimi). generally equal in lengih, blunt triangular or spine-tike in shape and equidistant from eacty other (about 0.25 to 0.5 mm). They are commonly present on some walls while absent on ohers within a single corallite, Septal spines appear in be continuations of bundles of libres of the librous wall. Ustally rerminating as, or being seeti as fan-shaped witu (see above - Preservation), In Iongitudinal section, the generally upturned septal spines are observed to occasionally form short vertical rows on cogallite walls.

Disenssion

A. fromensis is unlike the the previously described Early Cambrian corals from the same location, Finderspora hownani laluste 199 L (e.g. Lafuste ad al. 1991) and Memonpara chamberonsas Fullet \& Jenkins. 1994, A. fromensis is distinguistied from E: bownani by the size and general form of the colomy, the position and shape of tabulae and septa, as well as the mode of increase. In E thomvomi, tabulae are mosily complete and concave proximally; there are 6-16 stroogly devoloped slightly carved septa, theedges of which bear very shart bluni spines; the walls are very shopt segnents between the septa. Increase is by longitudinal fission
The main differences. between A. fromensis and M. chomberensis are in the xuze and form of the colonies, the size and shape of the corallites and the arrangement and shape of tabulae. Alliongth both are cerioid in colonial finm, the former is much larger and usualfy has parallel corallites, while those in M. chumhrivnsix are generally divergent. Corallites ate prismatic to cylindrical and up lo $1 / 14$ mim diandect and 47.5 mm in length in. 4 . fromensis, thu much smatler tup to 5 mon in diameter and 9.5 mm in length and tuberoud or integuarly sylindrical in M. chumberensis. The presence or absence of septal spines is commorn to buth corils: when present they are about the sante size and shape
Tahulae differ greaty. being incomplete. globose and dissepimentlike (labellae) in A. frometris and complete, undulating and horizomeal to concave upward in M. chamberensis, Although the mierosiructure bas not been studied at high magnification, there are some similarities between the aboye corals at low magnification. These include the paralel fibrous elenents of the selerenchyme evident in transverse gection, and the parallel to diverging fibrous ciements in longitudinal secion. Fan-like arrays of fibres are not present in M. chamberchsis. A medial liade whithin walls of adjacent cerallite occurs in both corals. Medial lines in the walls are commun in tatulate corals, and represent the external epithecd (Hill 1981).
A. fromenses is unlike any of the prevsuusty deseribed Canbriai corals suggested by Scrutor (9979) to have tabulate affiaities, bul does have skeletal characteristies in common with some of the Late Silurian to Late Permian michelinids.
The diagnostic characteristics the the genus Michetinia De Koninck 1841 inelade thin to nooderately thick walls with a medial sugure shorl septal trabeculae, tabulae incomplete and globose sometimes with septal spinules on the upper surface, and larec mural pores (Hill 1981). The walls and tabulae are similar to those seen in A. fromensis but, the preseni laxon lacks mural phtes.

Mheretmia expansa White 1883 ITabelldephthum pecwliare Stumm 1948] (Stumm 1948) from the Early Carboniferons of Arizona, is similar to A. fromensts with respect to the form of the colony, she size and shape of cotallites and the arrangement of tabellae. Coralites are up to 15 mm in diameter sn the lormer and 14 mm in the later. Corallites are also or'a smidar shape, being generally 4,5 or 6 sided, but difter by the lack of septa in M. expansa. A most moliceable similanty between the two is the placenent, size and shape of the tabellae. They are incomplete and globose and are arranged in similar manner in boh taxa, arising from ether the walls or idjacent tabellas, The tabellae in A. Thomensis appear to be less globose, spaced shightly further apart, and hate a more irregular and wavy surface

Aluough A. Jromernix most closely besembles some of the micheliniids, because of the long time separation between them (-120 million years) it is highly unlikely that they are related and more probable their skeletal similarities result from eonvergent evolution.

Conclusions

The three described corals from the Mootowie Formation. A. fromerasls, M. wamberenvis and F, bowmanii, are very differeft in form and arrangemend of the skeleton. The diverse nature of the corals from this ancient resfal environment indicares that during the Early Cambriam, varability in polyp form and skeletal morpholagy was well established.

The genus Luthenuria has been recognized as the catliest tabulate coral, with a lime range from the base of the Early Ordovician to the earty L.ato Ordovician
(Serutron 1979, 1984, 1992, Hill 1981). It has been described as primitive, cerioid, of simple morphology. aseptate, but with tabulae and rare mural pores (Bassler 1951.) Flower 1961; McLend 1979; Seruton 1984; Liub 1984). Although A. fromensis lacks mural pores. it has a similar skeletal structure to some michelinids which past-date Lichenaria Most of the skeletal aspects of A. fromensis are characteristic of Palaeozolic tabulate corals. These are (1) the ceriond form of the colony; (2) walls separaled by a medial line reflecting individual corallites (Scruton 1987); (3) the spine-like to wedge-shaped seplat decasimnally situated in longitudinal tows (Hill 1981); (4) individual corallites. which spread above the pockets of sediment within the culory, this habit being usual tor enidarians following influxes of sediment (Scrutton 1979): (5) lateral increase common, with peripheral intracalicular increase being described in some Favositidae (Hill 1981). Although tabulae are incomplete and dissept-ment-like, they are consistenlly and strongly developed both within individual and between adjacent corallies in A. fromensis.
A. fromensis has anthozoan structural characteristics, most of which are evident in tabulate corals. It should therefore probably be included in the known group of tahulates, thus extending the time range of this group to the late Early Cambrian.

Acknowledgments

The authors gratefully acknowledge Brent Bowman and John Hart who collected the studied material. We also thank Gino Snidero for his pholographic work.

References

Basster. R. S (1950) Faunal lists and deseription of Dalseozelic Corals Mom. Geot Som. Am 44, 1315 .

1. TMER, R. H (1961) Montema and related colonial conts. Nelv Mex Tave, of Tech Mem. 7, 1-47.
Pliter M. K. \& Jexkivs, R. J. E. (1994) Moeqcovpera chamterehss. a camal foon the Early Cambrian Moonmae Immation, Finders Ragees, Spuih Australiz Traus. K Sou. S. lave 118(4). 227235.
HIII, D. (4881) Rugosa and Thabulatar PR. 1-762. is Tenchert. C. (Ed.) "Tratise of Inverfebrate Palamontory. Part E. Coctenterata, Supplement 1" (Georl. Sos. Am. \& Uni. Kansils, Boulder Coloradory.
 1). (1991) The oldest tabulate coral and the assuciated drehacocyaltit, Lower Cambrian. Flinders Rampes. South Auscrala, Gevbies 24, 697718
LAy H, R. S, (1984) Lwhenarid W1NCHELL \& SCHICHERT. 1895? Lamontid RAYMOND. 1924, hand the carly history of the sbbulatic corals. IV thernational Syimpasion ion Fossil Condariat Poluwortogr, $\mathrm{tm}_{\mathrm{m}} \mathrm{54}$, 159-163.

Othewtire, K (1989) Diagenesis in corals: syntaxtal comenta ats evodence tor pasi-murtem skeletal thichenings. V International Symposium on Fossit Cnidaria, Forsil Cudarte 5, 169-177.
Molenis 1 D. 1979) A Luwer Ordovician (Canadham lichenarid coral trom the Orark uplitf area, I. Poleoni, 53. 505-506.
Smartst, M., Mouni, J, F., Somable S, E \& Buckin, 1 (1983) Pdeobiologient and palenenvirommental conkext of coral bearing Eastly Cambilan reefs: implicatons for Phanerozuic reef stevelopment. Gedogy 21, 917-920.
Screy tton, C, T. (1979) Early fossil Cnidarians pp. 161-207 in House, M. R. (Ed) The irigin of major imertehrate gmups (Academic Press. London de New York).
1984) Origin and early ewtuthon of Tathutate Corats. IV International Symposum on Fossil Cnidaria.

- (1992) Findersipera bonomam Lafusce, and the ensly evolution of the tahulate corals. Fossil Cridaria d Porifera 21, 29-33.
Stusm. E. R. (1948) Upper Devonian uetraconals from the Marin Limesturic. .L Pataenht 22, 40-4.2

[^0]: * Department of Gcology and Gegphysics, University of Adelaide. South Australia 5005.

